Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Sci Rep ; 13(1): 9371, 2023 Jun 09.
Article in English | MEDLINE | ID: covidwho-20236010

ABSTRACT

Communities worldwide have used vaccines and facemasks to mitigate the COVID-19 pandemic. When an individual opts to vaccinate or wear a mask, they may lower their own risk of becoming infected as well as the risk that they pose to others while infected. The first benefit-reducing susceptibility-has been established across multiple studies, while the second-reducing infectivity-is less well understood. Using a new statistical method, we estimate the efficacy of vaccines and facemasks at reducing both types of risks from contact tracing data collected in an urban setting. We find that vaccination reduced the risk of onward transmission by 40.7% [95% CI 25.8-53.2%] during the Delta wave and 31.0% [95% CI 19.4-40.9%] during the Omicron wave and that mask wearing reduced the risk of infection by 64.2% [95% CI 5.8-77.3%] during the Omicron wave. By harnessing commonly-collected contact tracing data, the approach can broadly provide timely and actionable estimates of intervention efficacy against a rapidly evolving pathogen.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Contact Tracing , Pandemics , Vaccination
4.
Sport Sci Health ; : 1-8, 2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2283146

ABSTRACT

Purpose: The United Kingdom (UK) government imposed its first national lockdown in response to COVID-19 on the 23rd of March 2020. Physical activity and sedentary behaviour levels are likely to have changed during this period. Methods: An online survey was completed by n = 266 adults living within the UK. Differences in day-to-day and recreational physical activity (at moderate and vigorous intensities), travel via foot/cycle, and sedentary behaviour were compared before and during the initial COVID-19 lockdown. Results: The median level of total weekly physical activity significantly reduced (- 15%, p < 0.001) and daily sedentary time significantly increased (+ 33%, p < 0.001). The former was caused by a significant reduction in weekly day-to-day physical activity at moderate intensities (p < 0.001), recreational activities at vigorous (p = 0.016) and moderate (p = 0.030) intensities, and travel by foot/cycle (p = 0.031). Sub-group analyses revealed that some populations became disproportionally more physically inactive and/or sedentary than others, such as those that were: living in a city (versus village), single (versus a relationship), an athlete (versus non-athlete), or earning an average household income < £25,000 (versus > £25,000). Conclusions: Now that the UK is transitioning to a state of normal living, strategies that can help individuals gradually return to physical activities, in accordance with the 2020 WHO guidelines, are of paramount importance to reducing risks to health associated with physical inactivity and sedentary behaviour.

5.
BMC Infect Dis ; 22(1): 672, 2022 Aug 05.
Article in English | MEDLINE | ID: covidwho-2196079

ABSTRACT

BACKGROUND: Factors that lead to successful SARS-CoV-2 transmission are still not well described. We investigated the association between a case's viral load and the risk of transmission to contacts in the context of other exposure-related factors. METHODS: Data were generated through routine testing and contact tracing at a large university. Case viral loads were obtained from cycle threshold values associated with a positive polymerase chain reaction test result from October 1, 2020 to April 15, 2021. Cases were included if they had at least one contact who tested 3-14 days after the exposure. Case-contact pairs were formed by linking index cases with contacts. Chi-square tests were used to evaluate differences in proportions of contacts testing positive. Generalized estimating equation models with a log link were used to evaluate whether viral load and other exposure-related factors were associated with a contact testing positive. RESULTS: Median viral load among the 212 cases included in the study was 5.6 (1.8-10.4) log10 RNA copies per mL of saliva. Among 365 contacts, 70 (19%) tested positive following their exposure; 36 (51%) were exposed to a case that was asymptomatic or pre-symptomatic on the day of exposure. The proportion of contacts that tested positive increased monotonically with index case viral load (12%, 23% and 25% corresponding to < 5, 5-8 and > 8 log10 copies per mL, respectively; X2 = 7.18, df = 2, p = 0.03). Adjusting for cough, time between test and exposure, and physical contact, the risk of transmission to a close contact was significantly associated with viral load (RR = 1.27, 95% CI 1.22-1.32). CONCLUSIONS: Further research is needed to understand whether these relationships persist for newer variants. For those variants whose transmission advantage is mediated through a high viral load, public health measures could be scaled accordingly. Index cases with higher viral loads could be prioritized for contact tracing and recommendations to quarantine contacts could be made according to the likelihood of transmission based on risk factors such as viral load.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Contact Tracing , Humans , Quarantine , Viral Load
6.
Lancet Reg Health Am ; 16: 100377, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2061625

ABSTRACT

The COVID-19 pandemic has accelerated the growth of digital health tools. Although a number of different tools exist to support field data collection in the context of outbreak response, they have not been sufficient. This prompted the World Health Organization (WHO) to collaborate with the Global Outbreak Alert and Response Network (GOARN) and GOARN partners to develop a comprehensive system, Go.Data. Go.Data, a digital tool for outbreak response has simplified how countries operationalize and monitor case and contact data. Since the start of the pandemic, WHO and GOARN partners have provided support to Go.Data projects in 65 countries and territories, yet the demand by countries to have documented success cases of Go.Data implementations continues to grow. This viewpoint documents the successful Go.Data implementation frameworks in two countries, Argentina and Guatemala and an academic institution, the University of Texas at Austin.

7.
Proc Natl Acad Sci U S A ; 119(34): e2200652119, 2022 08 23.
Article in English | MEDLINE | ID: covidwho-1991763

ABSTRACT

Although testing, contact tracing, and case isolation programs can mitigate COVID-19 transmission and allow the relaxation of social distancing measures, few countries worldwide have succeeded in scaling such efforts to levels that suppress spread. The efficacy of test-trace-isolate likely depends on the speed and extent of follow-up and the prevalence of SARS-CoV-2 in the community. Here, we use a granular model of COVID-19 transmission to estimate the public health impacts of test-trace-isolate programs across a range of programmatic and epidemiological scenarios, based on testing and contact tracing data collected on a university campus and surrounding community in Austin, TX, between October 1, 2020, and January 1, 2021. The median time between specimen collection from a symptomatic case and quarantine of a traced contact was 2 days (interquartile range [IQR]: 2 to 3) on campus and 5 days (IQR: 3 to 8) in the community. Assuming a reproduction number of 1.2, we found that detection of 40% of all symptomatic cases followed by isolation is expected to avert 39% (IQR: 30% to 45%) of COVID-19 cases. Contact tracing is expected to increase the cases averted to 53% (IQR: 42% to 58%) or 40% (32% to 47%), assuming the 2- and 5-day delays estimated on campus and in the community, respectively. In a tracing-accelerated scenario, in which 75% of contacts are notified the day after specimen collection, cases averted increase to 68% (IQR: 55% to 72%). An accelerated contact tracing program leveraging rapid testing and electronic reporting of test results can significantly curtail local COVID-19 transmission.


Subject(s)
COVID-19 Testing , COVID-19 , Contact Tracing , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/transmission , COVID-19 Testing/standards , COVID-19 Testing/statistics & numerical data , Contact Tracing/statistics & numerical data , Humans , Quarantine , SARS-CoV-2 , Texas/epidemiology
8.
MMWR Morb Mortal Wkly Rep ; 70(35): 1201-1205, 2021 Sep 03.
Article in English | MEDLINE | ID: covidwho-1413254

ABSTRACT

Colleges and universities in the United States have relied on various measures during the COVID-19 pandemic to prevent transmission of SARS-CoV-2, the virus that causes COVID-19, including implementing testing programs (1-3). These programs have permitted a safer return to campus for students by identifying infected persons and temporarily isolating them from the campus population (2,3). The University of Texas at Austin (UT Austin) implemented COVID-19 prevention measures in Fall 2020* including the following testing programs: clinic-based diagnostic testing, voluntary community screening, and targeted screening (testing of specific student populations in situations of increased transmission risk). During September 30-November 30, 2020, UT Austin students participated in tests for SARS-CoV-2, which resulted in the detection of 401 unique student cases of COVID-19 from among 32,401 tests conducted.† Among students who participated in one targeted screening program for students attending campus events, 18 (37.5%) of 48 infected students were asymptomatic at the time of their positive test result compared with 45 (23%) of 195 students identified through community testing and nine (5.8%) of 158 students identified through clinic-based testing. Targeted screening also identified a different population of students than did clinic-based and community testing programs. Infected students tested through targeted screening were more likely to be non-Hispanic White persons (chi square = 20.42; p<0.03), less likely to engage in public health measures, and more likely to have had interactions in settings where the risk for SARS-CoV-2 transmission is higher, such as restaurants, gyms, and residence halls. In addition to clinic-based SARS-CoV-2 testing at colleges and universities, complementary testing programs such as community and targeted screening might enhance efforts to identify and control SARS-CoV-2 transmission, especially among asymptomatic persons and disproportionately affected populations that might not otherwise be reached.


Subject(s)
COVID-19 Testing , COVID-19/prevention & control , Mass Screening , SARS-CoV-2/isolation & purification , Students/statistics & numerical data , Universities , Adolescent , Adult , COVID-19/epidemiology , Female , Humans , Male , Program Evaluation , Quarantine , Texas/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL